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TIME SERIES ANOMALY DETECTION 

A practical guide to detecting anomalies in time series using AI concepts 

 

Introduction  

This white paper is about finding anomalies in time series, which we encounter in almost every 

system. I usually keep notes when I work on projects, and this paper is based on my experiences 

and the notes I took while working on anomaly detection systems. 

 

There are hundreds of papers containing different methods and algorithms for finding anomalies 

in time series. However, as someone who has worked on many of these algorithms, I must say that 

there is no single algorithm that can catch all anomalies. Instead, we must choose combinations of 

algorithms to achieve particular goals.  

 

I have seen many software engineers and programmers struggling with understanding algorithms 

in papers or having problems with using them in their applications. This work provides a general 

overview of using artificial intelligence methods in any application, not just in time series, so that 

everyone with intermediate knowledge of programming, mathematics, and statistics can 

understand them and use them in software applications.  

 

I have used Java as the programming language to implement the algorithms, and I explain things 

as simply as possible to make the algorithms easier to implement. I have included examples mostly 

from computer networking, but also from different businesses and industries. 

 

Chapters 1 to 14 describe the theoretical basis and practice behind anomaly detection algorithms. 

In each of these short chapters, I discuss a single subject with examples. I have used words as well 

as formulas to help keep my explanations as clear and simple as possible. In the last four chapters, 

we focus on building a simple but functional anomaly detection engine. 

 

If you have already studied AI, you will find most of the chapter topics familiar, because the 

primary goal of this paper is describing the concepts used in AI and building a statistical machine 

learning anomaly detection engine. You will not need a third-party library to build your software 

because this paper will help you understand and implement your own learning algorithm and 

anomaly detection engine.  

 

Finally, this paper is like an open lab report written in a conversational style. Feel free to contact 

me at kamran@sleptons.com if you have any questions. 
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1. Time Series 
 

1.1. What is a time series? 

A series is a series in which the items are changing over the time. This paper focuses on numeric 

time series. For example, you may want to monitor and analyze your diet by measuring how many 

calories you consume every day. To do that, every day you would write down a new item of 

information containing a date and how many calories you consumed. After three months, you 

would have around 90 items or data points. These points can be drawn on an x-y coordinate system 

with time on the x-axis and calories on the y-axis. The trajectory on this graph may make some 

patterns obvious. For example, it might show that, during weekends, you consume more calories 

than on working days, or that the calories you consume per day are the lowest on Mondays. 

 

ὅέὲίόάὩὨ ὅὥὰέὶὭὩί ὝὭάὩ ὛὩὶὭὩίḊ ὨȟὧȟὨȟὧ ȟȣ 

1-1- Calories consumed per day as a series containing dates and caloric values. 

 

1.2. Sensor  

Time series are everywhere. Collecting time series data requires only something that measures the 

value of the variable of interest and sends it on to be stored or processed on a periodic basis. A 

device that interacts with the system, measures one or more variables, and gives you the result is 

called a sensor. 

 

For example, to keep track of the temperature of a room, all you need is a digital thermometer 

controlled by a computer. It is easy enough to write an application that sends a message to the 

digital thermometer every so often to get it to return the temperature of the room. If the temperature 

is taken every minute, every day 14401 data points are returned. These points show the room 

temperature with a resolution of one minute. 

 

Sometimes a physical sensor is not needed to collect the value of the variable. For example, a 

database administrator (DBA) of a company might like to analyze the load on a database. All the 

DBA needs to do is to write a simple script that gets the CPU usage of the database server every 

minute and stores it somewhere for later processing using an SNM2 call. Network administrators 

can do the same to collect incoming and outgoing traffic usage too, such as the series in 1-2. 

  

                                                 
1 (1440 samples per day) = (60 samples per hour) x (24 hours) 
2 SNMP is the abbreviation for ñSimple Network Management Protocolò. Plenty of useful measures of device activity 

are easy to obtain by running the ñsnmpwalkò command on almost any operating system or networked device. 
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ὔὩὸύέὶὯ ὝὶὥὪὪὭὧ ὝὭάὩ ὛὩὶὭὩίḊ άȟὭȟέ ȟάȟὭȟέ ȟȣ 

1-2- Each data point in a network traffic usage time series contains a time measurement 

(minute) as well as measures of incoming and outgoing traffic. 

 

So, no matter what the industry, if the required sensors are available, it is possible to measure any 

parameters of a system periodically and collect time series data from it. 

 

1.3. Regular vs. Irregular 3 

Until now, we have described time series as a sequence of numeric values of a measure or measures. 

If the sampling events occur at equal intervals in time, the result is called a regular time series. 

Otherwise, it is called irregular. For example, the examples we used above of calories eaten per 

day or network traffic usage per minute are both regular time series, whereas a time series that 

tracks credit card usage would be an irregular time series because there is not necessarily any 

consistent pattern to when people make purchases. The general form of a time series applies to 

both regular and irregular cases4 is like 1-3. 

 

ὝὭάὩ ὛὩὶὭὩίḊ ὸȟὺ ȟὸȟὺ ȟȣ 
 

ὭὪ ὝὭάὩ ὛὩὶὭὩί Ὥί ὶὩὫόὰὥὶ ὸὬὩὲ  ὸ ὸ ὧέὲίὸὥὲὸ  

1-3- In a regular time series, points are collected in a fixed time space. 

 

1.4. Univariate vs. Mul tivariate  

The temperature example used above is a univariate time series in which each item is a pair of 

variables (time, number) while the network traffic is a multivariate time series because each item 

is a pair of variables (time, vector), with the vector containing values for both incoming and 

outgoing traffic. 

 

ὝὭάὩ ὛὩὶὭὩίḊ ὸȟὠ ȟὸȟὠ ȟȣ 
 

ὠ ὺȟὺȟȣ  

1-4- In multivariate time series, each point contains a time value and a vector of other 

data. 

 

  

                                                 
3 Sometimes regular time series are called evenly spaced time series, and irregular ones are called unevenly spaced 

time series. 
4 It is possible to convert an irregular time series to regular by using a longer timeframe. In the credit card example, 

for instance, if credit card activity is tracked per day rather than per transaction it can work as regular time series. It is 

also possible to produce null data whenever there is no updated or new sample data. 
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In this paper, we focus on and describe regular univariate time series, though we do give some 

hints on how to analyze and process multivariate or irregular time series. So, from now on, unless 

we strictly emphasize that we are discussing multivariate or irregular time series, when we mention 

ñtime series,ò we mean univariate regular time series. 

 

1.5. Periodicity and Cycles 

If there is a repeating pattern over some time period in a time series, the time series can be called 

periodic. Most of the measures of the resources that people use every day are periodic because of 

the nature of human life. For example, road traffic or electricity usage in a city, or internet usage 

in a company, all are examples of periodic patterns. In these examples of time series, usage goes 

up in the morning and falls in the afternoon or evening, and then the same pattern repeats the next 

day. 

 

Weekly patterns are also easy to find because the usage of resources usually decreases during 

weekends. And yearly patterns are also common because the seasonal changes in weather affect 

how we live in different months, and there are also holidays and celebrations in some months. So 

periodicity can affect the standard behavior of a time series over different time scales. We will talk 

a bit more about periodicity later when we introduce methods of decomposition of time series. 

 

We must mention that sometimes time series have cycles that repeat over time. Cycles are different 

from periodic patterns because they do not have fixed periods. For example, consider an economic 

or financial index that shows purchasing power. This index could have some fluctuation over an 

extended period because it depends on the overall economic condition of the world, which is not 

constant. We know if that index hits its maximum it will go down after a while, but there is no 

fixed period either for hitting the maximum or for returning to its average value because the 

situation depends on so many independent variables. 

 

1.6. Trends 

Trends in a time series are behavior of the time series over a period longer than its longest period. 

If the longest period of a time series is a year, for example, then, if the average of the series is 

taken for at least one or even two years, the result will show the trend. For example, consider the 

average price of a house in a city from 1900 to 2017. The prices may have had some ups in the 

warmer months and downs in the cooler months every year, however, because of inflation, the 

average price of a house between 1900 and 2017 has had a positive slope or upward trend. Note 

again, that to spot a trend, the duration examined must be greater than the longest period, otherwise, 

periodic changes can mask a trend. 
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1.7. Irregularity  

Once the trend and periodic behaviour are removed from a time series, the remaining part is called 

the residual or the irregular component. This part fluctuates almost randomly over the period 

analyzed.   

The better you define and extract trend and periodic behaviour in a time 

series, the less regularity will be left in the residual.  

 

The residual can be considered to be something like noise or a random variable, although 

sometimes there might be a reason for this componentôs behaviour. Consider a distributed denial 

of service (DDOS) cyberattack on a server. The time series graph of the serverôs traffic volume 

would show some unusual behavior at that point, and if its time seriesô usual trend and periodic 

behaviour were removed, the attackôs impact would be easy to see in its residualsðthe attack 

reduces the randomness of the residual, or decreases its entropy. 

 

1.8. Example 

Look at the 200 sample points of the time series shown in Figure 1-5. It is evident that it has some 

periodicity, an upward trend and a residual. 

 

 

1-5- Sample time series, showing the trend, periodicity, and residual components. 
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We will introduce methods to extract these components in next few chapters. For now, just look 

at Figure 1-6 and try to figure out how to decompose this time series into these three parts5. We 

must mention that not all time series exhibit clear periodicity or trends as smooth as the one in this 

example, but the decomposition methods are usually powerful enough to extract these components. 

 

 

1-6- The components of the time series in Figure 1-5: residual (bottom, irregular line), 

trend (smooth line with positive slope) and periodicity (wave-like line). 

 

 

  

                                                 
5 You can consider the positive offset of seasonality (here about 15 units) for the trend so that the seasonality fluctuates 

around zero and the trend starts at a higher level. It just depends on your decomposition algorithm. 
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2. Anomaly 
 

2.1. What is an Anomaly? 

An anomaly in general and in time series context, is something that happens with a very high 

deviation from what we expect. The reason for using the words ñhigh deviationò is that we want 

to emphasize the difference between an anomaly and something unusual. This definition lets us 

use probability theory to model experiments and recognize anomalies. 

 

Example 1: One day, you wake up in the morning and look through the window and see the sky is 

green. This is something you never expected, so it is an anomaly. 

 

Example 2: You flip a fair coin, and it lands on its edge instead of showing heads or tails. The first 

time this happens, you might think that it was an accident, but then, in subsequent experiments, 

again and again, it does the same thing. This strange phenomenon is an anomaly. 

 

Example 3: While your monthly utility bill has been around $60 for many years, this monthôs bill 

is $230! You have never had a bill higher than $80, and you have not bought any new electrical 

devices, so it is an anomaly. 

 

Example 4: Same scenario as in Example 3, but now there are rumors that people have been getting 

erroneous sums on their utility bills this month. Now there is an explanation for the unusual bills, 

so, you do not get excited as much as in Example 3 and do not consider it to be an anomaly, just 

something unusual6. 

 

Example 5: You are the administrator of a network, and every day in the morning you check the 

previous night's usage traffic. You usually see very low traffic between 2:00 am and 6:00 am, but 

one day you see a small peak at 4:30 am. Now, based on your previous experience, it can be 

considered unusual and not an anomaly. But if there were a large peak at 4:30 am, you might 

consider that to be an anomaly. 

 

2.2. The close relation between anomalies and probability  

Let us continue our discussion of the coin flipping experiment and suppose some alien from 

another planet who does not know anything about the outcomes of coin flipping (but knows 

probability and statistics!) starts to do experiments with a coin. 

 

He flips a fair coin, and it lands heads up, so he assumes that if you flip a coin it lands heads up all 

the time. He tries the experiment for another 42 times and, unexpectedly (for us), every time he 

observes a head outcome. So, up to now, the evidence for his theory is that if you flip a coin, it 

lands heads up with the following probability: 

 

  

                                                 
6 That is in cat using Bayesian inference unconsciously, because you update the probability when you get a new 

evidence. 
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ὖὬὩὥὨ
τς

τς
 

2-1- The probability of landing heads up is 100%, based on getting heads on 42 out of 42 

tries. 

 

He continues the experiment, and, suddenly, on the 125th flip, he gets his first tails. This outcome 

is an anomaly for him because he has never seen a coin land tails up. However, after this 

experiment, he understands that there is a small possibility of getting tails. 

 

ὖὸὥὭὰ
ρ

ρςυ
πȢππψ 

 

ὖὬὩὥὨ
ρςτ

ρςυ
πȢωως 

2-2- The probabilities of heads and tails after 125 experiments 

 

Now, he thinks it is possible but still unusual to get tails. But if he continues getting tails 

occasionally, he realizes that the outcome of a coin flipping experiment could be either heads or 

tails. Since the coin is fair, after 1,000 experiments, he might get a result of 495 heads and 505 

tails. 

 

ὖὸὥὭὰ
υπυ

ρπππ
πȢυπυ 

 

ὖὬὩὥὨ
τωυ

ρπππ
πȢτωυ 

2-3- After 1,000 experiments, the alien understands that when you flip a coin, the 

probability of getting heads or tails is almost equal. 

 

As this example demonstrates, it is a judgment call about how to define what is an anomaly and 

what is not, even when based on the calculated probability of an outcome. In some cases, it may 

also be necessary to define normal as an outcome with a minimum threshold of probability and 

anything with a probability lower than that threshold as an anomaly. No one way is correct all the 

time.  

 

When variables are monitored, and probed, there might be hazards or noise in the data. If, for 

example, any outcome with probability lower than 0.01 is considered to be an anomaly, then the 

system would recognize even those hazards as anomalies. Since we usually look for malicious 
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activities, and these activities do not have the same kind of pattern as hazards or noise, it is better 

to define a probability range for anomalies, such as [0.001 ... 0.010)7,8.  

In this way, every outcome with a probability of less than 0.001 is a hazard, every probability 

between 0.001 and 0.010 is an anomaly, and everything else is a normal outcome9. Now, back to 

our alien story: if he flips the coin 5,000 times and gets only one instance of the coin landing on 

its edge and not more, we can assume that this outcome is a hazard and not an anomaly, but if it 

happens 5 or 10 times, it counts as an anomaly. 

 

2.3. Context matters 

Context does matter. Some experimental outcomes that would be anomalies in one system might 

be normal in another system. For example, in Figure 2-4, the left side shows a typical single period 

of a time series. The situation from around t = 90 to t = 120 on the right side is considered to be an 

anomaly based on the fact that a smooth curve is expected. 

 

 

2-4- Rapid fluctuations in a smooth curve is anomalous behaviour. 

 

 

Now compare Figure 2-4 with Figure 2-5; the same situation as seen in the anomalous section 

between t = 90 and t = 120 on the right of Figure 2-4 is normal behavior here, but in this case, a 

smooth signal, as shown in the right side of Figure 2-5 is something abnormal. 

 

                                                 
7 [0.001 ... 0.010) means { x | x ɴ ȟπȢππρὼ ד  πȢπρπ . 
8 We will see in next chapters that another way to solve this problem is to look at the sequence of observation results, 

not just at one. 
9 As we said, it all depends on the system being probed and the tolerance for unexpected outcomes. For instance, in 

building an anomaly detection system which monitors the vital signs of a patient in the hospital, every outcome with 

a probability lower than 0.50 may be considered to be an anomaly. 
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2-5- Smoothness in a curve that always has some fluctuation is an anomalous behaviour. 

 

 

Figure 2-6 shows how a drop to zero is also an anomalous behavior for both time series. 

 

 
 

2-6- A sudden drop in signal in both smooth and fluctuating time series is an anomalous 

behavior. 

 

 

To end this chapter, let us reiterate that the above reasoning can be explained using the definition 

of an anomaly we gave based on probabilities. With this reasoning, the fluctuating part of  Figure 

2-4 is an anomaly because our experience shows that the probability of having that kind of 

fluctuation in a day is zero, and the same explanation goes for Figure 2-5, in which the probability 

of having a smooth curve is zero. In Figure 2-6, the probability of having such a steep drop is also 

zero because, in both time series, no drop of this kind has ever happened before10.  

 

 

  

                                                 
10 Note that if such a drop continues to happen, then, after some time, its probability gets large enough to consider it 

something unusual or even usual or normal. 
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3. System 
 

3.1. What is a system? 

The variables of interest we discuss here do not exist in isolation; they are parameters in systems 

we want to measure and monitor to see if everything is going well or not! A human body, a 

computer network, a car, a city, the world economy, etc. all are examples of systems. Whenever 

there are components exchanging data, and working together, it is a system. The boundaries of a 

system are defined by the people studying it, and the boundaries can be defined from different 

perspectives. Consider a car as a system: it is possible to measure and monitor parameters such as 

oil and gas levels, brakes, and engine health to make sure that the car is up and running. It is also 

possible to measure and monitor the bumpers and airbag to make sure that a driver is also safe. 

Sometimes it can also be useful to measure and monitor the interactions of a system with its 

environment, especially in cases where interest lies in an ecosystem containing many systems 

working together as an even bigger system. 

 

3.2. Static and Dynamic Models 

First, what is a model? A model is anything that tries to describe a system. All we are doing in this 

paper is trying to find a way to model the behavior of a system and find its anomalies. It is relatively 

easy for someone to look at a time series graph and guess what part of a time series has an anomaly 

if the ups and downs of the series set up an expectation or model in their mind and if some parts 

of the time series violate that model. We need to find a way to formulize this idea to be able to use 

it as a model in our control or monitoring programs. So, back to our coin flipping experiment: if 

someone flips a coin every hour and an observer of this system saves the result to analyze this 

process, after a while, it becomes clear that, no matter what time or day or month it is, the result is 

almost 50% heads and 50% tails. We call this a static model because the outcomes of the 

observation are independent of time, as shown below: 

 

ὖὸὥὭὰὖὬὩὥὨ
ρ

ς
 

3-1- In a static system, the probabilities of the outcomes do not change with time. 

 

In other words, if the mathematical description of the system shows no time dependency, the model 

is static. Let us describe why we say that the Formula in 3-1 outlines a static system. The 

experiment of flipping a coin has just two possible states, that is, either heads or tails, and Formula 

3-1 shows that the state of that system does not depend on time. 

 

Now consider a system that models a personôs pulse. Peopleôs pulses are higher when they are 

awake, and lower when they are asleep. Suppose you wearing a sensor which reads your pulse 

every hour, and its resolution is 10 beats per minute. So, during the daytime, it might show 70 bpm 

or 80 bpm, or even 90 bpm or 100 bpm when exercising, and during the nights, when you are 

asleep, 60 bpm or 70 bpm, as described in Formula 3-2. 
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ὴόὰίὩὸ
χπȟψπȟωπȟρππ         φȡππ ὸ ςτȡππ

φπȟχπ             ὸ χȡππ
 

3-2- A model to describe the pulse rate of a human as a function of time. 

 

If probabilities are taken into account, the model better describes the system. The model would 

then be something like Formula 3-3: 

 

ὴόὰίὩὸ
ὖχπ πȢφȟὖψπ πȢσψȟὖωπ πȢπρȟὖρππ πȢπρ     φȡππ ὸ ςτȡππ

 
ὖφπ πȢχȟὖχπ πȢσ                                                               ὸ χȡππ

 

3-3- A model to describe probability of the pulse rate of a human as a function of time. 

 

The model shown in Formula 3-3 provides better information about the behavior of your pulse. 

For example, it shows that your pulse is unlikely to stay at 100 bmp for a long time because history 

shows that, between 6:00 and 24:00, the probability of reaching that pulse rate is just one percent. 

 

3.3. More information yields a better model 

In both Formula 3-2 and Formula 3-3 we modeled pulse rate as a function of time, like this: 

 

ὴόὰίὩὪὸὭάὩ 

3-4- Pulse rate as a function of time. 

 

However, if we could gather more information, we would be able to build a better model. For 

example, if we consider collecting other data, including what you are doingðlet us call it 

ñactionòð your pulse rate can be described using Formula 3-5: 

 

ὴόὰίὩὪὸὭάὩȟὥὧὸὭέὲ 

3-5- Pulse rate as a function of time and action. 

 

Now our model tries to describe pulse rate based on two different parameters. Although the actions 

we do every day are usually related to the time of day, if we have access to both parameters, our 

model potentially would catch anomalies more accurately, for example, when you go to work at 

3:00 am or if you are working and experiencing a heartbeat of 100 bpm! Both states are anomalies, 

which we could not catch if our model were just a function of time. 
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3.4. State of a system 

The set of the values of variables that describes a system is called the state of a system. In coin 

flipping, the observation has just two states: heads or tails. For the system, we modeled in Formula 

3-5, the combinations of different values of time and action determine the various possible states 

of the system. So, if we have three actions, such as ñworkingò, ñexercisingò and ñsleeping,ò 19 

pulse rate variations (i.e. from 0 bpm to 180 bpm with a resolution of 10 bpm)  and 24 hours, at 

any time, the system could be in any of σ  ρω  ςτ  ρȟσφψ possible states. 

 

However, most of the time, systems are not likely to return all of the possible states with equal 

probability. Instead, they return just a portion of all possible states, and the probability associated 

with each of these states shows the systemôs behavior or its nature. The pattern that results is, in 

fact, a basis for recognition (clustering and classification) which our brains use every day. We will 

talk about this later. 

 

For example, there are over one billion websites on the internet, but how many of them do you use 

every day? What is the likelihood that you will look at a specific website at a particular time? Most 

of us do not visit more than 50 specific websites daily. Now, if we collect information on when 

and how many times you access these sites, we can build a model to describe your web surfing 

behavior. Your model is perhaps different from someone elseôs model, but it is not likely to be 

unique in the world. More state variables, such as how long you stay on each website, the sequence 

in which you visit them, the searches you usually do, etc., need to be added to the model to describe 

your unique web surfing behavior11. 

 

We must be careful to understand why we build models in first place. Having a model containing 

a hundred variables is not necessarily useful because processing that much information to find 

anomalies in real time requires an enormous amount of CPU power and memory. The more 

parameters that get added to a model, the more complicated it gets, until, at some point, the 

complexity of the model may approach the complexity of the system itself12.   

 

 

 

  

                                                 
11 User behavior analysis tool is a software that gets this kind of information and builds a behavioral model or 

fingerprint for every user of the network. It is supposed to recognize people based on their computer usage behaviour. 
12 In machine learning, when a learning algorithm gives around 100% correct answers with the data it trained on, there 

is a high risk that the algorithm will produce incorrect answers with real data because the model is over-fitted. A 

similar thing happens when a model is too general, also known as under-fitted. 
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4. Data 
 

4.1. Data generator function 

Collecting real data can take a long time, and sometimes things donôt go as planned, such as when 

systems or sensors crash or stop working. Even when everything works perfectly, the data still 

needs to be cleaned. Sometimes it is more efficient to use manually generated data for experiments. 

Based on what we talked about in Chapter 1, all that it takes to make appropriate data is to define 

the functions for the trend, periodicity, and residual for the simulation. For example, there could 

be: 

 
1. A daily pattern which has a morning high peak, afternoon low peak, and another peak before a new 

day starts. 

2. A weekly pattern in which usage increases on weekends. 

3. A small and smooth residual. 

4. A trend level that increases about 30% per year. 

5. A sampling rate of every 5 minutes. 

 

Using this information, we have ςτ  ρς  ςψψ samples per day and χ  ςψψ ςπρφ samples 

per week. So, if time starts from 0, then, using pure sine waves, we can write the periodic pattern, 

trend and residual functions as in Formulas 4-1. 

 

ὶὩίὭὨόὥὰὸ
ρ ς ὶὥὲὨὸ

ς
 

 

ὨὥὭὰώὸ ςÓÉÎ
ς“

ςψψ
ὸ ÓÉÎ

τ“

ςψψ
ὸ

ρ

ς
ÓÉÎ 
ς“

χς
ὸ 

 

×ÅÅËÌÙÔ

ừ
Ử
Ừ

Ử
ứ πȟ

Ôȿςπρφ

ςψψ
υ

 

τÓÉÎ
Ôȿςπρφυςψψ

ςςψψ
ȟ

Ôȿςπρφ

ςψψ
υ

 

 

ὸὶὩὲὨὸ ρυ
υὸ

ρπππππ
 

4-1- Components of the sample time series variable. 

 

The ñ|ò sign used above is for the modulo operator, which gives the remainder of time divided by 

ςπρφ ρς  ςτ  χ. Any periodic function can be used to simulate the required periodicities; 

the key is being able to define the right period for daily and weekly values. Using these components 

and adding them together gives us the graph in Figure 4-2 for a single day. 
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4-2- One day sample of the components used in Formula 4-1. 

 

 

Figure 4-3 below shows the effect of the weekly periodicity, in which the last two days of the week 

have more usage than the working days: 

 

 
 

4-3- A weekôs sample of the data used in Formula 4-1. 

 

 

Now this function works to generate data for the time series, and anomalies can be added in to test 

the system.  
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4.2. Collecting latency data 

Almost all operating systems have a ping utility used to check the latency between a userôs 

computer and some remote point. For example, in Mac OS or Linux, itôs simple to check the 

connection latency with Google via the command in Terminal, shown in Listing 4-4: 
 

$ ping google.com - c 10  

PING google.com (172.217.6.110): 56 data bytes  

64 bytes from 172.217.6.110: icmp_seq=0 ttl=54 time=25.878 ms  

64 bytes from 172.217.6.110: icmp_seq=1 ttl=54 time=29. 438 ms  

64 bytes from 172.217.6.110: icmp_seq=2 ttl=54 time=28.884 ms  

64 bytes from 172.217.6.110: icmp_seq=3 ttl=54 time=73.999 ms  

64 bytes from 172.217.6.110: icmp_seq=4 ttl=54 time=27.296 ms  

64 bytes from 172.217.6.110: icmp_seq=5 ttl=54 time=26.867 ms  

64 bytes from 172.217.6.110: icmp_seq=6 ttl=54 time=24.696 ms  

64 bytes from 172.217.6.110: icmp_seq=7 ttl=54 time=27.373 ms  

64 bytes from 172.217.6.110: icmp_seq=8 ttl=54 time=25.345 ms  

64 bytes from 172.217.6.110: icmp_seq=9 ttl=54 time=32.693 ms  

 

---  goog le.com ping statistics ---  

10 packets transmitted, 10 packets received, 0.0% packet loss  

round - trip min/avg/max/stddev = 24.696/32.247/73.999/14.089 ms  

4-4- Using the ping command to measure the latency between a computer and a remote 

host. 

 

To have only one ping result and the Unix timestamp, use this command: 

 
$ echo `date +%s`,`ping - c 1 google.com|tail - 1|awk '{print $4}'|cut - d '/' - f 2`  

1481747355,25.929  

4-5- How to get only one ping result, with a time stamp. 

 

The next step is to put this command in a bash file and call it every 5 minutes in a crontab13.  The 

result of the echo command can also be added to a file. After a while, this collected data will shows 

the real latency pattern between a machine and google.com or any other website over time. 

 

4.3. Monitoring MySQL connections 

Just like with the ping command, itôs possible to gather information about any parameters of any 

services running on your servers. For example, if you have MySQL running on one of your servers, 

you can collect the number of connected users, as shown below, and use the same method we 

described before to save the result in a file: 

 
$ mysql - e "show status like '%Max_used_connections%'" | grep "Max" | awk '{print $2}'  

16 

4-6- Collecting the number of users connected to MySQL, in this case, 16. 

                                                 
13 crontab (cron table) is a file in Linux systems which contains the schedule of  tasks that must automatically run. 
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4.4. Established TCP connections from a computer 

In the same way that we used the ping and MySQL commands above, you can gather information 

about the number of established TCP connections from your computer using the command below: 

 
$ netsta t - an |  grep "ESTABLISHED" | wc - l  

23 

4-7- A simple command to return the number of established connection from your 

computer. 

 

You can start playing with time series with any of the measures mentioned above. The only thing 

you need to make sure of is that we prefer regular univariate time series, so sample them regularly. 

 

4.5. Pulling versus pushing  

From the ADE (anomaly detection engine) side, you can pull information or have the system you 

are observing pushes the information to your engine, as shown in Figure 4-8. 

 

 

 

4-8- Pushing vs. pulling data models. 

 

Pushing is when the system which generates data simply sends a copy of the data to the ADE 

whenever it has them ready. It is a bit safer for the system because no external source is required 

to poke it. With the pulling method, the ADE asks the system in every time interval to get a copy 

of the updated data. 

 

Using the HTTP or HTTPS protocol can be helpful in either of the methods. However, since we 

are not sure whether the monitored system can terminate these kinds of connections, we suggest 

using the push method. So, all we need to do is to design and implement a listener for the ADE 

and ask the system to send the data to the ADE server. Moreover, in most cases, you do not even 

need to write any agent application to do it, a simple script can send data to your ADE listener, as 

shown in Listing 4-9. 

 
$ curl http://wwww.myADE.com/data?time=`date +%s`&data=`mysql - e "show status like 

'%Max_used_connections%'" | grep "Max" | awk '{print $2}'`s  

4-9- The command to call in each time interval to send data to your ADE listener. 
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The curl command calls the data servlet of your ADE service and passes the time and updated 

value of the number of MySQL connected users. That is like calling the servlet with 

ñtime=1481821906&data=21ò parameters. If you are collecting data from a real working system, 

the collected data could be something like the data shown in Figure 4-10. 

 

 

4-10- Sample of 15 days of real data from a sensor sending data every two minutes, or 720 

times per day. 

 

Over the 15-day period shown above, the pattern of the variable for the five workdays is different 

than the pattern over the weekends, suggesting a weekly pattern. Importantly, the time series is not 

smooth, but instead it is spiky and has some large fluctuations. This is completely normal, in fact, 

it usually happens when collecting aggregated data from a system where the count of aggregating 

sources is small.  

 

For example, if you assume that Figure 4-10 shows the internet usage of an ISP, then it clearly 

shows that the ISP has a small number of users. If it had a large user base, then the usage pattern 

would be smooth. Visually analyzing and understanding the anomalies in this kind of time series 

is difficult, so we will start first with smoother patterns, and then discuss spikier patterns in later 

chapters. 
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5. Introduction to time series anomaly detection 

 
5.1. Using static thresholds 

After monitoring variablesô changes for a while, you can usually get an idea of how much each 

variable can go up or down, so it is usually possible to define maximum and minimum safe values. 

Then, whenever the updated data goes above or below these values, your software can assume that 

something strange is happening and can generate an alarm. This model works well for some 

systems, such as controlling the temperature of a room or maintaining a minimum number of items 

in inventories, etc. 

 

 

5-1- Sample time series data showing unusual activity between t = 25 and t = 50 (circled). 

 

Figure 5-1 shows some real data from a time series. If we put a high threshold at 0.7 and a low 

threshold of 0.4, then there are three points when the variable is above or below the defined 

thresholds. In this model, we have assumed that normal behavior is when the variable has some 

value between thresholds, so based on our definition of the normal range of values, our system 

works well.  But if we carefully study the above series, you will find that there is something unusual 

going on between the times of 25 and 50; the variable is experiencing a lower level than its normal 

value. Our simple threshold based anomaly detection cannot detect this situation. We can also see 

that the local minima seem to have a periodic or at least cyclic rhythm. Again, this threshold-based 

model is not able to detect or control the rhythm of these local minima because we have not defined 

the pattern of the local minima as critical or defined the system to operate so as to keep its average 

at a certain level. We, therefore, cannot expect our simple system understand or catch these 

anomalies. 
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5.2. Baselines and deviation 

Many people prefer to define a baseline for their time series, and then calculate the deviation from 

that baseline. The idea is correct in a variety of circumstances. In fact, whenever we make a choice 

between different options, we make a comparison by calculating the deviation between each option 

and the baseline or the ideal option in our mind, and then we choose the one which is closer to the 

baseline. 

 

For example, consider what you would do if you were the manager of a company and wanted to 

hire an accountant for the enterprise. You have interviewed some people, have their resumes on 

your desk, and want to choose one of them. You unconsciously have an idea (or model) of what a 

good accountant is in your mind. You just go through the resumes and remember the corresponding 

interview, or even the face of each candidate, and then compare this information with your ideal 

model. You do this for all of them and choose the best fit, the one with minimum deviation from 

the model you have in your mind. Even if you think you do this by your gut instincts, the model is 

what is in your gut instincts. So, note that a baseline does not necessary mean a literal line, even 

though it is easy to show a line in graphs. I prefer to use the term model instead of baseline to 

describe the norm or what is expected. 

 

5.3. Moving average 

Suppose you have a time series like the one in 5-2. Then, at any time, you can calculate the average 

of the recently received values of the series, as shown in Formula 5-3. 

 

ὺὸḊ ὸȟὺ ȟὸȟὺ ȟȣȟὸȟὺ ȣ 

5-2- A general univariate time series. 
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5-3- Moving average of the time series, for a window of k items. 

 

Formula 5-3 calculates the average of the time series based on the last k items; we call this a 

moving average14. If you calculate the moving average whenever new updated data comes in, since 

most variables behaving normally do not experience a sudden dramatic change in their movements, 

then you can estimate the next value likely to come in by allowed deviation margin over recent 

average. Figure 5-4 shows the series we had in Figure 5-1, but with margins and the moving 

average added. 

 

  

                                                 
14 There are other methods to calculate the moving average which we will discuss later in this chapter. 
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Here the moving average is based on the last 10 data items, and the margins are 10%. The upper 

and lower margins do not need to be equal; it depends on your business and needs. If you compare 

this model to our first simple static threshold method, you can see that this method can be 

interpreted as a dynamic threshold model a model which updates and adjusts its safe margin 

thresholds as time passes. 

 

 

5-4- Moving average of the last 10 items and 10% margins for a time series. Data in grey, 

moving average in black, and margins shown as dashed lines. 

 

 

5.4. The magic of our brains 

You may wonder why, when you look at a time series, even if you have not seen many days or 

months of the series, you can find almost all of its anomalies. No magic or complicated processing 

happens when you look that time series; the actual magic has been happening for your whole life 

and is still happening now.  

 

From the moment, you born, and perhaps even before that, your eyes and brain work together to 

gather information from around you15. Let us do a simple calculation. If you are 35 years old, 

multiply your age by 365 days in each year, 15 hours of open eyes per day, 60 minutes per hour, 

and at least 30 captured pictures. This gives us about 350 billion processed pictures. This is not 

the whole story, either, because, in each picture, there are different objects with different shapes 

and movement patterns. Now, look through the window or look around; how many objects do you 

see? 10, 50, 100, 500? Any of these objects contains more details, and most of the time smaller 

objects. Letôs assume we process an average of 100 objects in each picture. Then, the number of 

objects you have processed by the age of 35 comes to 35 trillion16,17! 

 

  

                                                 
15 Naturally, it starts from recognizing dark and light. 
16  These are just static objects or patterns. In real life, there are many sequence and temporal patterns that we also 

learn, know, and use every day. 
17 35 trillion is like number of seconds in 189 thousand years! 
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We have categorized every single one of these objects in our brains and have assigned some 

relations between them, too. So, it is not surprising that, when we see a time series, it is easy for 

us to pick out its anomalies, while it is a big deal for a computer program to do so. The important 

thing to think about is that: 

You cannot expect your model (or baseline) to answer any questions if you 

have not provided the required knowledge or information to it in advance.  

The above quote is a fact that we usually forget and expect our learning system understands 

everything we understand. So, in our recent model using moving average, the only thing our model 

knows is the average of its most recent 10 data points and a constant margin for deviation. If we 

assume one new data point per minute, the model knows only some limited informationðingle 

numbersðabout what happened in the last 10 minutes, and nothing more. If we compare this very 

narrow knowledge with the knowledge and intelligence we each have gathered and built upon in 

our minds over the years, the differences between our abilities to detect anomalies and computersô 

abilities to detect anomalies make more sense. 

 

5.5. A model for daily patterns 

A moving average model monitors a time series to make sure its changes are close to the recent 

moving average of the data coming in. It cannot predict the future, and it does not know the 

differences between morning and night or working days and weekends. But it is simple to build a 

model that incorporates information about the time of the day and working days vs. weekends. 

 

To do this, the first step is to gather enough information and let our ADE train on it. Suppose you 

are sending 12 samples per hour to your ADE. After four weeks, you will have samples of τ  υ  
working days and τ  ς weekends18, which is enough to start building a weekly model. To start, 

let us show our daily time series as in Formula 5-5 because it is regular and contains ςτ  ρς
ςψψ samples. 

 

ὨὥὭὰώὈὥὸὥὺȟὺȟὺȟȣȟὺ  

5-5- A single day regular univariate time series with 12 samples per hour. 

 

Now, based on the gathered information, you can calculate the average of the data for every sample 

in a day as follows19: 

 
  

                                                 
18 We may want to build seven different time series modelsðone for every day of the weekðbut here we simplify it 

by modelling only two different kinds of days, namely, working days and holidays. 
19 Note that this is not a complete model, but is better than what we have discussed till now. 
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5-6- Average series for working days and weekends.  

 

Using 5-6 and the four weeks of sample data, an ADE can build an average time series for working 

days and weekends. It can also be called a model, typical behaviour, or a baseline. Now, the ADE 

has some expectation of how the time series should behave on working days or weekends at any 

time of day. When new data comes in, the ADE chooses one of the two average models based on 

what day it is, and calculates the difference between the incoming data and its corresponding item 

in the average series. The ADE still needs those static thresholds or deviation percentages to make 

sure that the variable is in its safe region. This is one of the simplest ways to model different daysô 

behaviour and have some ability to predict future behaviour. 

 

5.6. Basic ADE design 

Systems usually change their behaviour over the time because they do not work in stable and fixed 

ecosystems, so their parameters and measures of behavior change too. If we keep the four-week 

average models we introduced in Formulas 5-6 and do not update them, after a while, when the 

system changes its behaviour, almost every new data point could count as an anomaly. For example, 

if we build these daily models for a cityôs electricity usage in a given year, after months or years 

when population increases, almost any incoming data will be higher than the safe margin, and the 

system will consider every incoming data point as anomalous even though they are not. Now look 

at Figure 5-7: 

 

 

5-7- Basic design for Anomaly Detection Engine. 
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The basic design for our anomaly detection engine should contain a switch that allows the ADE to 

update its model whenever new data comes in. The processing model is something like this: first, 

the ADE should compare the newly-received information with the current model, and then, if it is 

required, it should update the model. The order of these tasks is essential; you cannot first update 

the model and then compare the data with the model, because updating the model with the received 

data before comparison would change the model toward the new data and potentially could reduce 

the deviation.  

 

Now, consider a new data point that comes in at time=125 in a working day. Our ADE: 

 

¶ Selects the corresponding working day model, 

¶ Selects the 125th average item in the series (or daily model), 

¶ Calculates the difference between the given data and the selected item of the series, 

¶ If the deviation is above the defined margin, it generates an alarm, 

¶ If the ñUpdate Modelò is checked, ADE should update the 125th item in the working day 

average series. 

 

The only problem with this process is updating the items in the average series. While it may look 

like the ADE needs to have access to the all previous data to do this, but there is another way. The 

ADE can calculate the average the way we demonstrate in 5-8 below, by just keeping and updating 

the average value along with a counter that shows the population of the data that has been used in 

calculating the average: 

 

ὲὩύὃὺὩὶὥὫὩ
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5-8- How to update an average when you do not have access to the previous samples. 

 

Although calculating the average as in 5-8 works and looks logical, the concept of an average itself 

does have a problem. Consider what happens after many years, when we update the average 

repeatedly. In a case like this, N gets so large that     grows to become almost equal to 

oldAverage, and  shrinks down almost to 0, so the new data does not have enough weight to 

change the average or the model. The model then gets stuck, and cannot adapt itself to the new 

behavior of the system. The simplest way to solve this problem is to use an exponential moving 

average, which we will describe in the following chapters when we discuss learning mechanism. 
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5.7. Using other descriptive analytics measures  

Other descriptive analytics methods can also be used to find outliers or anomalies. For example, 

you can calculate the standard score as shown in 5-9 to see if recent data is off when compared to 

the last set of observed data20. If the score is greater than 3, or any other defined threshold, you 

can consider the last element as an outlier or anomaly. 

 

ίὩὶὭὩίḊ ȣȟὺ ȟὺ ȟȣ ὺ  ȟὺ  
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5-9- How to calculate the z-score for the recent window of the series item. 

 

Bolton and Handôs breakpoint analysis21 is another way to detect sudden changes in the behavior 

by defining two different windows with sizes of k and l as below, calculating their averages, and 

then using a method to compare these averages, such as the studentôs t-test: 

 

ὶὩὧὩὲὸ ύὭὲὨέύ έὪ ίὭᾀὩ ὯḊ  ὺ ȟὺ ȟȣ ὺ  ȟὺ  
 

άέὨὩὰ ύὭὲὨέύ έὪ ίὭᾀὩ ὰḊ  ὺ ȟὺ ȟȣ ὺ  ȟὺ   
 

 

ὸ
‘ ȡ 

‘ ȡ  

Ὧ ρ „ ȡ 
ὰ ρ „ ȡ  

Ὧ ὰ ς
  
ρ
Ὧ
ρ
ὰ

 

5-10- How to calculate the t-score for two different window size of the series. 

 

It is possible to describe the static behaviour of a time series using measures other than the z-score 

and t-test described above. But, no matter which measure you use, you need to write a simple test 

program and observe how the calculated index of the series changes over time. The next step is to 

find a method to use these measures so that the model adapts to the system and learns the correct 

behavior of the series over time. 

 

 

 

  

                                                 
20 Many of these indexes work only on data with a normal distribution, but you can always assume your data 

distribution is normal in small windows. 
21 Richard J. Bolton and David J. Hand 
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6. Using Data Distribution 
 

6.1. The need for more thresholds  

Look at Figure 6-1 and try to figure out its pattern. Though it may seem to have some kind of 

periodicity, it mostly looks like noiseðbut it is not. Let us investigate why not. 

 

 

6-1- Sample time series data with a noise-like appearance. 

 

We usually tend to draw time series as line graphs, but the truth is that, since we gather discrete 

data, it is sometimes better to draw them as scatter plots like the one shown in Figure 6-2. 

 

As Figure 6-2 shows, at any point the data could be around 11, 21 or 31. There are many system 

variables that could behave like this, for example, a tristate switch. 
 

 

6-2- Scatter plot representation of the same time series shown in Figure 6-1. 
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None of the models or indices we have talked about yet works in this situation, so we need to use 

a different type of logic to represent these states, like the one used in 6-3. 
 

Ὥίὃὲέάὥὰώὺ
ὝὙὟὉȟ ὺ ρπ έὶ ρς ὺ ςπ έὶ ςς ὺ σπ έὶ ὺ σς
ὊὒὃὛὉȟ ρπ ὺ ρς έὶ ςπ ὺ ςς έὶ σπ ὺ σς

 

6-3- A logical statement used to find anomalies in the time series shown in Figure 6-2. 

 

However, it is not sufficient to manually write logical statements to find anomalies; we need to 

clearly define the logic used to find the anomalies. In the case of the data shown in Figure 6-2, we 

can do this by asking ourselves how to define these regions on the graph where data appears. 

 

6.2. Using data distribution 

When you look at Figure 6-2 what you are probably doing is finding patterns by mentally grouping 

the data that are alike or close to each other. We call these groups clusters. We can recognize three 

clusters in the given data between 11°1, 21°1 and 31°1. The simplest thing we can do to find the 

data distribution is to define some data ranges, for example 0ï2, 2ï4, é 10ï12, é 30ï32, é and 

assign each of them an integer counter and set them all to zero. Then, for the entire given data set, 

increase the corresponding counter of the data value to produce a histogram: 

 

 

6-4- Histogram of the data in Figure 6-2. 

 

 

The histogram shows the distribution of the data. Figure 6-4 shows, almost 50% of the data items 

have values around 21, 25% around 11 and another 25% around 31.  

 

Drawing a histogram is like looking at the scatter plot from the left sideôs vertical axis. Figure 6-4 

is therefore exactly like what you would see if you could look along Figure 6-2 from its Y axis. 

Histograms can be generated to determine the data distribution for any time series, even with 

analogue data. Consider an analogue time series changing between zero and 2,500. If you choose 

intervals of 25, then you have 100 clusters or counters at most.  

Now whenever new data comes in, you can simply divide it by 25 and use the integer part of the 

result as the cluster ID or counter index, and then just increase that counter by 1. This method is 
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one of the widely-used clustering methods for single dimension data in which the clustersô width 

is predefined. Listing 6-5 shows a piece of code that finds these clusters; it uses Javaôs HashMap 

structure as the cluster counter. 

 
HashMap<Integer, Integer> getTimeSeries1DClusters(double[] t imeSeries, double clusterWidth) {  

    if (clusterWidth == 0 || timeSeries == null || timeSeries.length == 0) {  

        return null;  

    }  

     

    HashMap<Integer, Integer> clusters = new HashMap<Integer, Integer>();  

    Double data;  

    Integer clusterInd ex;  

 

    for (double sample : timeSeries) {  

        data = sample / clusterWidth;  

        clusterIndex = data.intValue();  

 

        if (!clusters.containsKey(clusterIndex)) {  

            clusters.put(clusterIndex, 0);  

        }  

        clusters.put(clusterI ndex, clusters.get(clusterIndex) + 1);  

    }  

 

    return clusters;  

}  

6-5- Simple Java function to return the histogram of a time series. 

 

Note that the code in Listing 6-5 does not care about the maximum or minimum values of the data. 

Generally, though, it is better not to have negative numbers. In next few chapters, we introduce 

better ways to cluster both negative and positive data values.  

 

6.3. Two-dimensional distribution 

Suppose your time series has some periodic behavior that is important to monitor. All the methods 

we have discussed so far ignore the time of data measurement and have no direct sense of time. 

The average models we discussed in Chapter 5 do account for time in their calculations because 

we keep unique mean value for the time quanta of the series. However, we can do better and find 

anomalies in two dimensions at once, time and value. Consider the time series we have in Figure 

6-6, which has some repetitive patterns; it looks like after each 19th or 20th data point, the series 

experiences a local minimum. These minima appear to be part of the systemôs behavior and not 

anomalies. 
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6-6- Sample time series with a repetitive pattern. 

 

 

If we pass the data in Figure 6-6 to the procedure we introduced in Listing 6-5 with a clusterWidth 

of 1, then we have only two clusters with a non-zero population. Letôs call the data in [1,2) cluster 

C1 and the data in [2,3) cluster C2. The population density of the cluster C2 is about 19/20, and 

for the cluster, C1 is about 1/20. Now, if we get a new data sample, such as (t=148, v=0.3), it goes 

into cluster 0. Since this cluster is empty, we should assume it is an anomalyðand this is OK. 

However, if we get a new data sample of (t=148, v=1.7), that data point goes into to cluster C1 

and it fits with our model and looks correct, though you know that it is not! The solution to make 

the model time aware is easy; we need to use a two-dimensional distribution. 

 

 

6-7- A two-dimensional distribution of a time series with a repetitive pattern. 

 

 

  


